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ELASTIC WAVE ATTENUATION AND VELOCITY OF BEREA SANDSTONE
MEASURED IN THE FREQUENCY DOMAIN
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Abstract.  Using measurements in the frequency domain we have measured quality factor Q
and travel times of direct and side-reflected elastic waves in a 1.8 m long sample of Berea
sandstone.  The frequency domain travel time (FDTT) method produces the continuous-wave
(cw) response of a propagating wave by stepwise sweeping frequency of a driving source and
detecting amplitude and phase of the received signal in reference to the source.  Each separate
travel path yields a characteristic repetition cycle in frequency space as its wave vector–distance
product is stepped; an inverse fast Fourier transform (IFFT) reveals the corresponding travel time
at the group velocity.  Because arrival times of direct and reflected elastic waves appear as spikes
along the time axis, travel times can be obtained precisely, and different arrivals can be clearly
separated.  Q can be determined from the amplitude vs. frequency response of each peak as
obtained from a moving window IFFT of the frequency-domain signal.  In this sample at ambient
conditions compressional velocity VP is 2380 m/s and QP is 55.

Introduction

Ordinarily, elastic wave travel time comes from direct measurements of transmission times
between a pulse source and a receiver.  Direct travel time can be difficult to measure because first-
arriving energy is often emergent, i.e., slowly rising.  This problem occurs particularly in hetero-
geneous materials such as rocks where complex, slightly different paths are available to distort
wavefronts and introduce path dispersion.  Other problems with directly measured travel times can
include low signal to noise (s/n) ratios in attenuating media and distinguishing arrivals that overlap
as a result of refraction, reflection, and scattering.  Even interference methods such as pulse-echo
overlap are commonly analysed in the time domain.  The alternative approach described here,
which requires controllable sources, avoids most of these problems by using time-averaged data
collected wholly in the frequency domain; it is not a Fourier-transformed time-domain signal.
Although this technique became apparent to us as a result of frequency domain measurements of
nonlinear elastic properties in which nonlinear interactions filtered out all but one frequency
(Johnson et al., 1991), the method of frequency domain reflectometry has been independently
developed in radar (Isuka and Freundorfer, 1983) and optics (Ghafoori-Shiraz and Okoshi, 1986;
Shadaram and Hippenstiel, 1986; Vanhamme, 1990).
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Method

Figure 1 is a simplified schematic diagram of an acoustic wave transmission experiment.  The
driving transducer receives a reference signal of the form

Ψ ref(ω , t) = Aref cos(ω t) (1)

where angular frequency ω  = 2πf and f is frequency.  If we consider a single travel path along the
vector Li having length Li, the signal received by the detector is

Ψsam(ω , t) = Ai(ω ,Li) e
-πfLi/Qv cos(ω t - k•Li) = Ai(ω ,Li) e

-πfTi/Q cos(ω t - ωTi) (2)

where k is wave vector of magnitude 2π/λ, λ is wavelength, v can be compressional, shear, or
surface wave velocity, and travel time Ti =  Li/v.  At each frequency step a transmitted (or
reflected) signal can be detected with respect to the reference frequency, for instance, by a lock-in
amplifier.  In the high frequency range of hundreds of kHz for these experiments our detector was
an electronic multiplier.  If we neglect beam pattern and amplitude changes in the transducer, the
product of the reference signal (1) and the phase-delayed signal (2) is a voltage that can be written
in the form of sum and difference frequencies

V  =  K
ArefAi

2  e-πfTi/Q [cos(2ω t  -  ωTi)  +

cos(ωTi)]
Signal 

Generator
IBM PC/AT

Power
Amp.

Sample

Preamp.

Detector
(Multiplier)

Low-Pass
Filter

Digital
Voltmeter

Ref.
Signal

Signal

Fig. 1.  Experimental configuration.  The
computer controls signal duration, t ime
delays, and signal averaging in the digital
voltmeter, and it stores voltage output from
the DVM.  Possible travel paths in addition
to direct transmission include side wall
reflections and surface waves.

where K is a constant incorporating preamplifier and
multiplier characteristics.  Low-pass filtering plus time-
averaging in the digital voltmeter (DVM) eliminates the
first term in (3), and only the second, dc term remains.
Incrementing frequency in steps δf increments k•Li =
ωTi produces a response in the frequency domain that
has a characteristic periodicity ∆fi = 1/Ti (Johnson et al.,
1991).  It should be pointed out that Ti contains the time
delays across the transducers as well as any electronic
delays, but these delays can be compensated for if the
reference signal also passes through similar transducers
and preamplifiers (Johnson et al., 1992), as was done
for this experiment.

In practice, a received signal can contain a number of
possible transmission/reflection paths Li between source
and detector.  A plausible way to pick out each Ti is to
perform an inverse fast Fourier transform (IFFT) on the
frequency domain signal.  Figure 2 shows the stepped
frequency-domain response along the length of a Berea
sandstone sample of dimensions 1829 × 4 5 3  × 453
mm.  Figure 3 is the corresponding IFFT.  The reversed
presentation may be confusing at first, i.e., the time
domain response of Figure 3 has the peaks ordinarily
seen in FFT frequency response curves.  A singular
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advantage of the FDTT method lies in this clear delineation of arrivals as peaks on the time axis
An intuitive way of interpreting an FDTT curve is as the broadband response to a source in the

form of a delta function impulse (whose Fourier transform contains all frequencies).  Each peak
along the time axis represents an impulse that has traveled along a different path.  In this
interpretation a peak occurs for a maximum energy arrival and thus corresponds to the group
velocity along its path.  Arrivals
after the first peak at 0.770 ms in
Figure 3 are those of waves reflected
off  the  s ides  of  the  sample in
different modes.  The direct travel
time corresponds to a group velocity
of 2380 m/s.
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Fig. 3.  Inverse Fourier transform of data from Fig. 2 showing
arrival of each mode as a separate peak on the time axis.

There are several advantages to
the FDTT method over simply
measuring a pulse transmission
time, the most obvious being the
clear delineation of arrivals that
would be hard to  separate  for
transmitted pulses when different
phases overlap.  Even the first
arrival of a pulse emerges slowly in
inhomogeneous media because of
wavefront distortion as different

portions of the wave travel along paths of slightly different velocity.  Further, time-averaging
permits selectively improving s/n at
those frequency steps where noise
is a problem without having to
stack an entire wavetrain.  Thus,
when transducers were placed side-
by-side at one end of the sample,
the improved s/n obtainable from
the  FDTT method  pe rmi t t ed
observation of the reflected wave
off the back face of the rock, a total
distance of twice the sample length
or 3.66 m, although we could not
d e t e c t  a n  a r r i v a l  b y  p u l s e
t ransmiss ion  us ing  the  same
apparatus (Johnson et al., 1992).
We note that this configuration
resembles that used in reflection
seismology.
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Fig. 2.  Frequency domain response for first 150 kHz of a sweep
from 75 to 250 kHz in steps of 50 Hz.

Conditions are imposed on this
method by the properties of digital tranforms.  Thus, the Nyquist sampling criterion to prevent
aliasing means δf must be less than 1/(2Tmax), where Tmax is the maximum travel time for which
a signal is received.  Time resolution δT ≈ 1/fmax can be improved by a wide frequency band fmax,
but of course this requires longer measurement time.
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Attenuation Measurement

From (3) we see that the amplitude of each arrival is exponentially attenuated by its travel time
(equivalent to distance) and by Q-1.  Instead of applying an IFFT to an entire frequency domain

response as done above we can
apply a moving window IFFT to
frequency bands within a signal such
a s  t h a t  o f  F i g u r e  2 .   W h e n
log(amplitude) is plotted against
frequency or frequency-time product
for an arrival peak, the slope yields
Q for the corresponding travel path
and wave mode.  Figure 4 shows a
moving-window transform for the
largest  peak of  Figure 3.   The
remarkable s/n allows intensity data
to be obtained over almost 4 orders
o f  m a g n i t u d e .   I n  t h i s  c a s e
compressional wave QP ≅ 60  for
two different frequency sweeps
hav ing  d i f fe ren t  s t a r t ing  and
stepping frequencies.  As a check on
the method we also show results for
a noise-free synthetic signal having
Q = 60.   If  we include a small
correction for geometrical spreading,
which is inversely proportional to
frequency in the far field (Pippard,
1978), the slope in Figure 4 should
be steeper by an increment of log2 =
0.3 for a factor of 2 increase in
frequency.  Correcting for this
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Fig. 4.  Amplitude (circles) of the largest peak shown in Fig. 3 vs.
frequency–travel time product as obtained from a moving window
IFFT of data of Fig. 2.  Also shown are results from another sweep
in steps of 100 Hz from 100 to 430 kHz for the same travel path
(squares) and from a synthetically generated, noise-free test signal
of Q ≡ 60 (diamonds).  Each window comprises 1024 points (51.2
and 102.4 kHz, respectively, for the two data sets) and overlaps
3/4 of the points in the previous window.  Frequency is the mean
within each window, and amplitudes are arbitrary.  The error bar
indicates the standard deviation of the fits to a straight line.

change gives QP = 55.  From differences between measurements and uncertainties about beam
spreading we estimate this value to be uncertain by about ± 5.

This QP is higher than values approaching 20–30 for weakly confined Berea specimens of cm-
size as determined from the FFT of a pulsed arrival in almost the same frequency band (Toksöz et
al., 1979; Johnston and Toksöz, 1979; Spencer, 1979; Frisillo and Stewart, 1980; Johnston and
Toksöz, 1980).  (Presumably, if these specimens were unconfined, their Q's would be still lower.)
The value is less than 140 for QE of weakly confined Berea sandstone in extensional resonance in
the kHz range (Winkler, et al., 1979).  In comparison with unconfined specimens at ambient
humidity as measured in resonance it agrees well with QP ≅ QS ≅ QE ≅ 58 (Clark, et al., 1980) and
with shear wave resonance QS ≅ 50 in dry Berea sandstone (Vo-Thanh, 1990).  Thus, to the extent
that Berea sandstone can be assumed uniform, these results suggest an apparent variation of
measured Q that depends on measurement technique such that the resonance and FDTT methods
yield higher values.  A possible reason is that the latter two methods have the common feature that
measured intensities vary over many orders of magnitude so that corrections to measured slopes
are relatively small.  As a further observation, if we consider scaling with size, this very large
sample can incorporate a larger range of crack sizes than can most laboratory specimens and there-
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fore might be expected to have lower Q.  However, there is no obvious size effect on Q, nor does
it seem to vary markedly with frequency over the two orders of magnitude between the resonance
and FDTT methods.  We note that if there were a frequency dependence of Q and an associated
velocity dispersion, then Q-1 would be given by the local slope on a plot such as Figure 3.  Slope
changes over such a limited frequency range would be hard to detect in the presence of noise.

Conclusions

For this sample, which was at ambient conditions, compressional velocity is 2380 m/s and QP
is 55.  Although only one of the modes was analyzed here, the FDTT approach permits calculation
of Q for each mode that arrives, e.g, shear, compressional, or combinations produced by
reflections.  Other features of the FDTT method have been documented elsewhere (Johnson, et al.,
1992).  These include application of nonlinear elasticity to generating low frequency waves having
greater propagation distances, demonstration that phase information for each arrival is obtainable,
and extension to using both in-phase and quadrature signals.

In principle, with a frequency–travel time product close to the range of Figure 3 it should be
possible to use the FDTT approach as an alternative to cross–correlation analysis in order to obtain
two-way travel times and Q in refraction and refraction seismology where controllable sources are
available, e.g., in Vibroseis® methods.  Observation of multiple echoes (Johnson, et al., 1992)
suggests that reverberations in room acoustics could be studied by this approach; similarly, other
long-term effects such as scattering-induced codas in architectural acoustics and seismology could
be treated.
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